Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.479
Filtrar
1.
Zebrafish ; 21(2): 149-154, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621206

RESUMO

Rising in popularity as a model organism in the classroom, zebrafish have numerous characteristics that make them ideal for teaching. In this study, we describe an experiment that helps students better understand the concept of tissue regeneration and the genes that control it. This experiment utilizes a dominant negative transgene for fgfr1 and allows students to observe the consequences of its activation. The first part of the laboratory is hands-on, and includes details of the amputation of caudal fins, heat shocking, general fish care, and visual observations. Over the course of a week, students observed the differences between the activated and unactivated transgene in the zebrafish. The second part was literature based, in which students tried to determine which gene is responsible for inhibiting regeneration. This encouraged students to sharpen their skills of deductive reasoning and critical thinking as they conduct research based on the information they receive about dominant negative receptors and transgenes. Having both a hands-on and critical thinking component in the laboratory helped synthesize the learning goals and allowed students to actively participate.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética , Cauda/fisiologia , Nadadeiras de Animais/fisiologia
2.
BMC Biol ; 22(1): 76, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581018

RESUMO

BACKGROUND: The gut microbiota, vital for host health, influences metabolism, immune function, and development. Understanding the dynamic processes of bacterial accumulation within the gut is crucial, as it is closely related to immune responses, antibiotic resistance, and colorectal cancer. We investigated Escherichia coli behavior and distribution in zebrafish larval intestines, focusing on the gut microenvironment. RESULTS: We discovered that E. coli spread was considerably suppressed within the intestinal folds, leading to a strong physical accumulation in the folds. Moreover, a higher concentration of E. coli on the dorsal side than on the ventral side was observed. Our in vitro microfluidic experiments and theoretical analysis revealed that the overall distribution of E. coli in the intestines was established by a combination of physical factor and bacterial taxis. CONCLUSIONS: Our findings provide valuable insight into how the intestinal microenvironment affects bacterial motility and accumulation, enhancing our understanding of the behavioral and ecological dynamics of the intestinal microbiota.


Assuntos
Microbioma Gastrointestinal , Intestinos , Animais , Intestinos/microbiologia , Escherichia coli/fisiologia , Fatores Biológicos , Peixe-Zebra/fisiologia , Microbioma Gastrointestinal/fisiologia , Bactérias
3.
Zebrafish ; 21(2): 144-148, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621210

RESUMO

Zebrafish eyes are anatomically similar to humans and have a higher percentage of cone photoreceptors more akin to humans than most rodent models, making them a beneficial model organism for studying vision. However, zebrafish are different in that they can regenerate their optic nerve after injury, which most other animals cannot. Vision in zebrafish and many other vertebrate animals, including humans, can be accessed using the optokinetic response (OKR), which is an innate eye movement that occurs when tracking an object. Because fish cannot use an eye chart, we utilize the OKR that is present in virtually all vertebrates to determine if a zebrafish has vision. To this end, we have developed an inexpensive OKR setup that uses 3D-printed and off-the-shelf parts. This setup has been designed and used by undergraduate researchers and is also scalable to a classroom laboratory setup. We demonstrate that this setup is fully functional for assessing the OKR, and we use it to illustrate the return of the OKR following optic nerve injury in adult zebrafish.


Assuntos
Nistagmo Optocinético , Peixe-Zebra , Humanos , Animais , Peixe-Zebra/fisiologia , Olho , Impressão Tridimensional
4.
Curr Biol ; 34(7): R278-R281, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593771

RESUMO

Schreckstoff (fear substance) is an alarm signal released by injured fish that induces a fear response. Its chemical nature has long been debated. A new study finds that zebrafish Schreckstoff is composed of at least three components, two of which elicit the fear response only in combination.


Assuntos
Medo , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Medo/fisiologia
5.
J Environ Sci (China) ; 143: 138-147, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38644012

RESUMO

Tetramethylammonium hydroxide (TMAH) is an important compound that utilized and released by the rapidly expanding semiconductor industry, which could hardly be removed by the conventional wastewater treatment techniques. As a cholinergic agonist, the tetramethylammonium ion (TMA+) has been reported to induce toxicity to muscular and respiratory systems of mammals and human, however the toxicity on aquatic biota remains poorly known. We investigated the neurotoxic effects of TMA+ exposure on zebrafish, based on neurobehavior tests and a series of biomarkers. Significant inhibitions on the swimming distance of zebrafish larvae were observed when the exposure level exceeded 50 mg/L, and significant alterations on swimming path angles (straight and deflective movements) occurred even at 10 mg/L. The tested neurobehavioral endpoints of zebrafish larvae were significantly positively correlated with reactive oxygen species (ROS) and malondialdehyde (MDA), significantly negatively related with the activities of antioxidant enzymes, but not significantly correlated with the level of acetylcholinesterase (AChE). Such relationship indicates that the observed neurotoxic effects on swimming behavior of zebrafish larvae is mainly driven by oxidative stress, rather than the alterations of neurotransmitter. At the highest exposure concentration (200 mg/L), TMA+ evoked more severe toxicity on zebrafish juveniles, showing significantly stronger elevation on the MDA activity, and greater inhibitions on the activities of antioxidant enzymes and AChE, suggesting juveniles were more susceptible to TMA+ exposure than larval zebrafish.


Assuntos
Biomarcadores , Larva , Compostos de Amônio Quaternário , Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Poluentes Químicos da Água/toxicidade , Biomarcadores/metabolismo , Compostos de Amônio Quaternário/toxicidade , Larva/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Natação , Comportamento Animal/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
6.
Sci Total Environ ; 924: 171678, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38485016

RESUMO

The ubiquity of amino antioxidants (AAOs) in the environment has attracted increasing attention, given their potential toxicity. This investigation represents a pioneering effort, systematically scrutinizing the toxicological effects of four distinct AAOs across the developmental spectrum of zebrafish, encompassing embryonic, larvae, and adult stages. The results indicate that four types of AAO exhibit varying degrees of cell proliferation toxicity. Although environmentally relevant concentrations of AAOs exhibit a comparatively circumscribed impact on zebrafish embryo development, heightened concentrations (300 µg/L) of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and N-isopropyl-N'-phenyl-p-phenylenediamine (IPPD) distinctly evoke developmental toxicity. Behavioral analysis results indicate that at concentrations of 20 and 300 µg/L, the majority of AAOs significantly reduced the swimming speed and activity of larvae. Moreover, each AAO triggers the generation of reactive oxygen species (ROS) in larvae, instigating diverse levels of oxidative stress. The study delineates parallel toxicological patterns in zebrafish exposed to 300 µg/L of 6PPD and IPPD, thereby establishing a comparable toxicity profile. The comprehensive toxicity effects among the four AAOs is as follows: IPPD >6PPD > N-Phenyl-1-naphthylamine (PANA) > diphenylamine (DPA). These findings not only enrich our comprehension of the potential hazards associated with AAOs but also provide data support for structure-based toxicity prediction models.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Antioxidantes/metabolismo , Fenilenodiaminas/toxicidade , Estresse Oxidativo , Larva , Embrião não Mamífero , Poluentes Químicos da Água/metabolismo
7.
Sci Total Environ ; 924: 171706, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38490420

RESUMO

This study investigates the individual and combined toxic effects of Bisphenol A (BPA) and Cadmium (Cd) in zebrafish, recognizing the complex mixture of pollutants organisms encounter in their natural environment. Examining developmental, neurobehavioral, reproductive, and physiological aspects, the study reveals significant adverse effects, particularly in combined exposures. Zebrafish embryos exposed to BPA + Cd exhibit synergistically increased mortality, delayed hatching, and morphological abnormalities, emphasizing the heightened toxicity of the combination. Prolonged exposure until 10 days post-fertilization underscores enduring effects on embryonic development. BPA and Cd induce oxidative stress, as evidenced by increased production of reactive oxygen species and lipid peroxidation. This oxidative stress disrupts cellular functions, affecting lipid metabolism and immune response. Adult zebrafish exposed to BPA and Cd for 40 days display compromised neurobehavioral functions, altered antioxidant defenses, and increased oxidative stress, suggesting potential neurotoxicity. Additionally, disruptions in ovarian follicle maturation and skeletal abnormalities indicate reproductive and skeletal impacts. Histological analysis reveals significant liver damage, emphasizing the synergistic hepatotoxicity of BPA and Cd. Molecular assessments further demonstrate compromised cellular defense mechanisms, synaptic function, and elevated cellular stress and inflammation-related gene expression in response to combined exposures. Bioaccumulation analysis highlights differential tissue accumulation patterns. In conclusion, this study provides comprehensive insights into the multifaceted toxicological effects of BPA and Cd in zebrafish, raising concerns about potential adverse impacts on environmental ecosystems and human health.


Assuntos
Cádmio , Fenóis , Peixe-Zebra , Humanos , Animais , Feminino , Cádmio/toxicidade , Cádmio/metabolismo , Peixe-Zebra/fisiologia , Ecossistema , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/metabolismo , Estresse Oxidativo , Hepatócitos
8.
Environ Toxicol Pharmacol ; 107: 104423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521434

RESUMO

As an emerging environmental contaminant, di (2-ethylhexyl) phthalate (DEHP) is widely present in the aquatic environment, however, the effects and underlying mechanisms of DEHP on the aquatic organisms are poorly understood. This study systematically investigated the ecotoxicity induced by chronic exposure to environmental relevant concentrations of DEHP (0.03 mg/L, 0.1 mg/L, and 0.3 mg/L) on zebrafish brain. Results indicated that DEHP exposure significantly increased the levels of ROS and disturbance of the antioxidant enzymes activities in the brain, which may further enhance lipid peroxidation and DNA damage. Furthermore, acetylcholinesterase activity was first stimulated and inhibited by exposure to DEHP, and the antioxidant and apoptosis related genes were mainly upregulated. Risk assessment indicated that the ecotoxicity of DEHP on the zebrafish showed an "enhancement-reduction" trend as the exposure time was prolonged. Overall, these results provided new insights and useful information to ecological risk assessment and environmental management of DEHP pollution.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Animais , Dietilexilftalato/toxicidade , Peixe-Zebra/fisiologia , Antioxidantes , Acetilcolinesterase
9.
Sci Total Environ ; 926: 171902, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38521262

RESUMO

Dimethyl phthalate (DMP), the lowest-molecular-weight phthalate ester (PAE), is one of the most commonly detected persistent organic pollutants in the environment, but its toxic effects, especially cardiovascular developmental toxicity, are largely unknown. In this study, zebrafish embryos were exposed to sublethal concentrations of DMP from 4 to 96 hpf. Our results showed that DMP treatment induced yolk retention, pericardial edema, and swim bladder deficiency, as well as increased SV-BA distance and decreased heart rate, stroke volume, ventricular axis shortening rate and ejection fraction. In addition, oxidative stress and apoptosis were found to be highly involved in this process. The results of transcriptome sequencing and mRNA expression of related genes indicated that MAPK and calcium signaling pathways were perturbed by DMP. These findings have the potential to provide new insights into the potential developmental toxicity and cardiovascular disease risk of DMP.


Assuntos
Ácidos Ftálicos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Sinalização do Cálcio , Embrião não Mamífero , Proteínas de Peixe-Zebra/metabolismo , Poluentes Químicos da Água/metabolismo
10.
Behav Brain Res ; 465: 114949, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38479474

RESUMO

Distinguishing familiar from novel stimuli is critical in many animals' activities, and procedures based on this ability are among the most exploited in translational research in rodents. However, recognition learning and the underlying brain substrates remain unclear outside a few mammalian species. Here, we investigated one-trial recognition learning for olfactory stimuli in a teleost fish using a behavioural and molecular approach. With our behavioural analysis, we found that zebrafish can learn to recognise a novel odour after a single encounter and then, discriminate between this odour and a different one provided that the molecular structure of the cues is relatively differentiated. Subsequently, by expression analysis of immediate early genes in the main brain areas, we found that the telencephalon was activated when zebrafish encountered a familiar odour, whereas the hypothalamus and the optic tectum were activated in response to the novel odour. Overall, this study provided evidence of single-trial spontaneous learning of novel odours in a teleost fish and the presence of multiple neural substrates involved in the process. These findings are promising for the development of zebrafish models to investigate cognitive functions.


Assuntos
Odorantes , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Aprendizagem , Encéfalo , Sinais (Psicologia) , Olfato/fisiologia , Mamíferos
11.
J Hazard Mater ; 469: 133953, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38461670

RESUMO

Arsenic is a worldwide environmental pollutant that can impair human health. Previous studies have identified mental disorders induced by arsenic, but the environmental exposure concentrations in the early life stages associated with these disorders are poorly understood. In the present study, early-life stage zebrafish were used to explore the effects on mental disorders under 'environmental standard limit concentrations' arsenic exposures of 5, 10, 50, 150, and 500 µg/L. The results showed that arsenic exposure at these concentrations changed the locomotor behavior in larval zebrafish and was further associated with anxiety, depression, and autism-like behavior in both larval and juvenile zebrafish. Changes were noted at benchmark dose limit (BMDL) concentrations as low as 0.81 µg/L. Transcriptomics showed that immediate early genes (IEGs) fosab, egr1, egr2a, ier2b, egr3, and jund were decreased after arsenic exposure in larval and juvenile zebrafish. Nervous system impairment and anxiety, depression, and autism-like behaviors in early-life stage zebrafish at 'environmental standard limit concentrations' may be attributed to the downregulation of IEGs. These findings in zebrafish provided new experimental support for an arsenic toxicity threshold for mental disorders, and they suggest that low levels of environmental chemicals may be causative developmental factors for mental disorders.


Assuntos
Arsênio , Transtorno Autístico , Animais , Humanos , Arsênio/toxicidade , Peixe-Zebra/fisiologia , Transtorno Autístico/induzido quimicamente , Depressão/induzido quimicamente , Ansiedade/induzido quimicamente , Exposição Ambiental , Larva
12.
Environ Toxicol Pharmacol ; 107: 104419, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508506

RESUMO

Certain individuals have a disproportionate effect on group responses. Characteristics may include susceptibility to pollutants, such as cadmium (Cd), a potent trace metal. Here, we show how a pair of Cd-exposed individuals can impact the behavior of unexposed groups. We used behavioral assessments to characterize the extent of the effects of the Cd-exposed individuals on group boldness, cohesion, foraging, activity, and responses to plants. We found that groups with a pair of Cd-exposed fish remained closer to novel stimuli and plants than did groups with untreated (control) fish. The presence of plants reduced Cd-induced differences in shoal cohesion and delays feeding in male shoals. Shoals with Cd- and water-treated fish were equally active. The results suggest that fish acutely exposed to environmentally relevant Cd concentrations can have profound effects on the un-exposed majority. However, the presence of plants may mitigate the effects of contaminants on some aspects of social behavior.


Assuntos
Perciformes , Poluentes Químicos da Água , Animais , Peixe-Zebra/fisiologia , Cádmio/toxicidade , Comportamento Social , Poluentes Químicos da Água/toxicidade
13.
J Chem Ecol ; 50(3-4): 185-196, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38441803

RESUMO

Sea cucumbers frequently expel their guts in response to predators and an aversive environment, a behavior perceived as releasing repellents involved in chemical defense mechanisms. To investigate the chemical nature of the repellent, the viscera of stressed sea cucumbers (Apostichopus japonicus) in the Yellow Sea of China were collected and chemically analyzed. Two novel non-holostane triterpene glycosides were isolated, and the chemical structures were elucidated as 3ꞵ-O-[ꞵ-D-glucopyranosyl-(1→2)-ꞵ-D-xylopyranosyl]-(20S)-hydroxylanosta-7,25-diene-18(16)-lactone (1) and 3ꞵ-O-[ꞵ-D-quinovopyranosyl-(1→2)-ꞵ-D-xylopyranosyl]-(20S)-hydroxylanosta-7,25-diene-18(16)-lactone (2) by spectroscopic and mass-spectrometric analyses, exemplifying a triterpene glycoside constituent of an oligosaccharide containing two sugar-units and a non-holostane aglycone. Zebrafish embryos were exposed to various doses of 1 and 2 from 4 to 96 hpf. Compound 1 exposure showed 96 h-LC50 41.5 µM and an increased zebrafish mortality rates in roughly in a dose- and time-dependent manner. Compound 2, with different sugar substitution, exhibited no mortality and moderate teratogenic toxicity with a 96 h-EC50 of 173.5 µM. Zebrafish embryos exhibited teratogenic effects, such as reduced hatchability and total body length. The study found that triterpene saponin from A. japonicus viscera had acute toxicity in zebrafish embryos, indicating a potential chemical defense role in the marine ecosystem.


Assuntos
Glicosídeos , Pepinos-do-Mar , Triterpenos , Vísceras , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Glicosídeos/química , Glicosídeos/toxicidade , Glicosídeos/metabolismo , Vísceras/química , Vísceras/efeitos dos fármacos , Triterpenos/química , Triterpenos/farmacologia , Triterpenos/metabolismo , Pepinos-do-Mar/química , Embrião não Mamífero/efeitos dos fármacos , Toxinas Marinhas/toxicidade , Toxinas Marinhas/química
14.
Curr Biol ; 34(7): 1377-1389.e7, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38423017

RESUMO

Escaping from danger is one of the most fundamental survival behaviors for animals. Most freshwater fishes display olfactory alarm reactions in which an injured fish releases putative alarm substances from the skin to notify its shoaling company about the presence of danger. Here, we identified two small compounds in zebrafish skin extract, designated as ostariopterin and daniol sulfate. Ostariopterin is a pterin derivative commonly produced in many freshwater fishes belonging to the Ostariophysi superorder. Daniol sulfate is a novel sulfated bile alcohol specifically present in the Danio species, including zebrafish. Ostariopterin and daniol sulfate activate distinct glomeruli in the olfactory bulb. Zebrafish display robust alarm reactions, composed of darting, freezing, and bottom dwelling, only when they are concomitantly stimulated with ostariopterin and daniol sulfate. These results demonstrate that the fish alarm reaction is driven through a coincidence detection mechanism of the two compounds along the olfactory neural circuitry.


Assuntos
Cyprinidae , Perciformes , Animais , Peixe-Zebra/fisiologia , Olfato , Bulbo Olfatório , Sulfatos
15.
Aquat Toxicol ; 268: 106860, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354462

RESUMO

Cyanobacteria cell lysates release numerous toxic substances (e.g., cyanotoxins) into the water, posing a serious threat to human health and aquatic ecosystems. Microcystins (MCs) are among the most abundant cyanotoxins in the cell lysates, with microcystin-LR (MC-LR) being one of the most common and highly toxic congeners. In this study, zebrafish (Danio rerio) were exposed to different levels MC-LR that from extracts of Microcystis aeruginosa. Changes in the MC-LR accumulations, organ coefficients, and antioxidant enzyme activities in the zebrafish were analyzed. Transgenerational reproductive toxicity of MC-LR in the maternal and paternal generations was further investigated, as well as the influences of extracts containing MC-LR exposures of the F1 on the growth of zebrafish. The study found that high levels of MC-LR could be detected in the major organs of adult zebrafish, particularly in spleen. Notably, concentration of MC-LR in the spermary was significantly higher than that in the ovarium. MC-LR could induce oxidative damage by affecting the activities of catalase and superoxide dismutase. Inherited from F0, MC-LR led to impaired development in the F1 generation. Difference in offspring survival rates could be observed in the groups with different MC-LR levels of maternal and paternal exposures. This study reveals transgenerational effects of MC-LR on the reproductive toxicity and offspring growth inhibition to the aquatic organisms, which should be emphasized in the future ecological risk assessment.


Assuntos
Toxinas Marinhas , Poluentes Químicos da Água , Peixe-Zebra , Masculino , Animais , Feminino , Humanos , Peixe-Zebra/fisiologia , Microcistinas/toxicidade , Ecossistema , Poluentes Químicos da Água/toxicidade , Antioxidantes , Toxinas de Cianobactérias
16.
Sci Total Environ ; 919: 170790, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38331279

RESUMO

The combined pollution of lead (Pb) and polystyrene microplastics (PS-MPs) is common in aquatic environments. However, the combined neurotoxicity of these two pollutants is still poorly understood. In this study, zebrafish (Danio rerio) larvae were used to assess the combined neurotoxicity and mechanism of Pb and PS-MPs at environmentally relevant concentrations. The results showed that Pb (10 µg/L) induced abnormal behavior including significantly reduced movement distance, maximum acceleration, and average velocity (P < 0.05) along with altered expression of neurodevelopment-related genes (gap43 and α1-tubulin) (P < 0.05). PS-MPs (25 µg/L, 250 µg/L; diameter at 25 µm) co-exposure not only significantly reduced the concentration of Pb in the exposed solution (P < 0.01), but also decreased the uptake of Pb by downregulating the divalent metal transporter 1 gene (dmt1) (P < 0.01), thereby alleviating Pb-induced neurotoxicity. However, to demonstrate that PS-MPs alleviate the neurotoxicity of Pb by reducing Pb uptake, upregulation of dmt1 by addition of deferoxamine (DFO, an efficient iron chelator, 100 µM) significantly increased the Pb uptake and exacerbated neurotoxicity in zebrafish. In summary, our results demonstrated that PS-MPs alleviate Pb neurotoxicity by downregulating the mRNA level of dmt1 and decreasing the Pb uptake. This study provides a new insight into the combined neurotoxicity and underlying mechanisms of PS-MPs and Pb on zebrafish.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Microplásticos/toxicidade , Microplásticos/metabolismo , Plásticos/toxicidade , Peixe-Zebra/fisiologia , Chumbo/toxicidade , Chumbo/metabolismo , Larva/metabolismo , Metais Pesados/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
17.
Mol Syst Biol ; 20(4): 321-337, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38365956

RESUMO

Adult stem cells are important for tissue turnover and regeneration. However, in most adult systems it remains elusive how stem cells assume different functional states and support spatially patterned tissue architecture. Here, we dissected the diversity of neural stem cells in the adult zebrafish brain, an organ that is characterized by pronounced zonation and high regenerative capacity. We combined single-cell transcriptomics of dissected brain regions with massively parallel lineage tracing and in vivo RNA metabolic labeling to analyze the regulation of neural stem cells in space and time. We detected a large diversity of neural stem cells, with some subtypes being restricted to a single brain region, while others were found globally across the brain. Global stem cell states are linked to neurogenic differentiation, with different states being involved in proliferative and non-proliferative differentiation. Our work reveals principles of adult stem cell organization and establishes a resource for the functional manipulation of neural stem cell subtypes.


Assuntos
Células-Tronco Adultas , Células-Tronco Neurais , Animais , Peixe-Zebra/fisiologia , Células-Tronco Neurais/metabolismo , Neurogênese , Encéfalo , Diferenciação Celular
18.
Environ Pollut ; 347: 123630, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38423273

RESUMO

Pesticides are indispensable in agriculture and have become ubiquitous in aquatic environments. Pesticides in natural environments can cause many negative impacts on aquatic species, ranging from mortality to sub-lethal physiological and behavioural changes. The complex sub-lethal impacts of pesticides are routinely tested on model species, with zebrafish (Danio rerio) being regularly used as a behavioural model. Although behavioural ecotoxicology research using zebrafish is increasing rapidly, we lack quantitative evidence to support which pesticides have been tested and how study designs are carried out. This shortcoming not only limits the deliberate planning for future primary studies to fill the knowledge gaps but also hinders evidence synthesis. To provide quantitative evidence of what pesticides are currently studied and what study designs are used, we combined a systematic evidence map approach and bibliometric analysis. This novel method has been coined research weaving and allows us to elicit gaps and clusters in our evidence base, whilst showing connections between authors and institutions. The methodology can be summarised in five primary steps: literature searching, screening, extraction, data analysis and bibliometric analysis. We identified four areas where research on the sub-lethal effects of pesticide exposure on zebrafish is lacking. First, some widely used pesticides, such as neonicotinoids, are understudied. Second, most studies do not report important elements of the study design, namely the sex and the life-stage of the zebrafish. Third, some behaviours, such as impacts of pesticide exposure on zebrafish cognition, are underexplored. And last, we revealed through the bibliometric analysis that most of the research is conducted in developed countries and there is limited cross country co-authorships. Upon identifying these gaps, we offer solutions for each limitation, emphasizing the importance of diverse global research output and cross-country co-authorships. Our systematic evidence map and bibliometric analysis provide valuable insights for helping to guide future research, which can be used to help support evidence-based policy decisions.


Assuntos
Praguicidas , Animais , Praguicidas/toxicidade , Peixe-Zebra/fisiologia , Agricultura , Ecotoxicologia , Bibliometria
19.
Neurochem Int ; 175: 105706, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38423391

RESUMO

Alcohol use disorder (AUD) is characterized by a set of behavioral, cognitive, nutritional, and physiological phenomena derived from the uncontrolled use of alcoholic beverages. There are cases in which AUD is associated with anxiety disorder, and when untreated, it requires careful pharmacotherapy. Blue Calm® (BC) is a food supplement indicated to aid restorative sleep, which has traces of medicinal plant extracts, as well as myo-inositol, magnesium bisglycinate, taurine, and L-tryptophan as its main chemical constituents. In this context, this study aimed to evaluate the potential of the BC in the treatment alcohol withdrawal-induced anxiety in adult zebrafish (aZF). Initially, BC was submitted to antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl radical. Subsequently, the aZF (n = 6/group) were treated with BC (0.1 or 1 or 10 mg/mL; 20 µL; p.o.), and the sedative effect and acute toxicity (96 h) were evaluated. Then, the anxiolytic-like effect and the possible GABAergic mechanism were analyzed through the Light & Dark Test. Finally, BC action was evaluated for treating alcohol withdrawal-induced anxiety in aZF. Molecular docking was performed to evaluate the interaction of the major chemical constituents of BC with the GABAA receptor. BC showed antioxidant potential, a sedative effect, was not toxic, and all doses of BC had an anxiolytic-like effect and showed potential for the treatment of alcohol withdrawal-induced anxiety in aZF. In addition to the anxiolytic action, the main chemical constituents of BC were confirmed in the molecular docking, thus suggesting that BC is an anxiolytic that modulates the GABAergic system and has pharmacological potential for the treatment of alcohol withdrawal-induced anxiety.


Assuntos
Alcoolismo , Ansiolíticos , Síndrome de Abstinência a Substâncias , Animais , Peixe-Zebra/fisiologia , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Ansiedade/psicologia , Alcoolismo/tratamento farmacológico , Simulação de Acoplamento Molecular , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Receptores de GABA-A , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Transtornos de Ansiedade/tratamento farmacológico , Suplementos Nutricionais , Hipnóticos e Sedativos
20.
Sci Total Environ ; 921: 171133, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38395162

RESUMO

The bioavailability and toxicity of organic pollutants in aquatic organisms can be largely affected by the co-existed nanoparticles. However, the impacts of such combined exposure on the visual system remain largely unknown. Here, we systematically investigated the visual toxicity in zebrafish larvae after single or joint exposure to titanium dioxide nanoparticles (n-TiO2) and bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH) at environmentally relevant levels. Molecular dynamics simulations revealed the enhanced transmembrane capability of the complex than the individual, which accounted for the increased bioavailability of both TBPH and n-TiO2 when combined exposure to zebrafish. Transcriptome analysis showed that co-exposure to n-TiO2 and TBPH interfered with molecular pathways related to eye lens structure and sensory perception of zebrafish. Particularly, n-TiO2 or TBPH significantly suppressed the expression of ßB1-crystallin and rhodopsin in zebrafish retina and lens, which was further enhanced after co-exposure. Moreover, we detected disorganized retinal histology, stunted lens development and significant visual behavioral changes of zebrafish under co-exposure condition. The overall results suggest that combined exposure to water borne n-TiO2 and TBPH increased their bioavailability, resulted in severer damage to optic nerve development and ultimately abnormal visual behavior patterns, highlighting the higher potential health risks of co-exposure to aquatic vertebrates.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Animais , Peixe-Zebra/fisiologia , Larva/metabolismo , Nanopartículas/toxicidade , Titânio/toxicidade , Titânio/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...